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The role that deep learning plays in modern life is undeniably essential. It is also 
certain that deep learning, with its various approaches, is contributing 
significantly to plant science. Whether by explaining the acquired data or 
converting and refining these data to a more profound level, deep learning 
techniques are pushing the frontiers of plant research further than ever before. 
This study is an attempt to shed light on recent advances and applications of 
deep learning in plant science. These applications were systematically reviewed 
at omics, micro/macroscopic, and population levels. Future aspects were also 
discussed to some extent.   
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1. Introduction 

Artificial intelligence (AI) is defined as the act of 
thinking and learning when performed by a computer 
program or machine. Due to its capability of 
simulating human intelligence and thus performing 
complicated human tasks, AI is steadily replacing 
human forces in various sectors. In science, AI is 
creating new frontiers in environmental [1], medical 
[2], pharmaceutical [3], biological [4], agricultural [5], 
and engineering [6] sciences.  

Various methodologies are used in AI research, and 
classifying these methods is tricky since many of them 
are interconnected. However, the classification agreed 
upon by many scholars subdivides AI techniques into 
four divisions: Machine learning (ML), Natural 
language processing (NLP), Computer vision, and 
Robotics (Fig. 1). ML is a major branch of AI that 
gained increasing importance in the big data era [7]. 
Deep learning (DL) is a subset field of ML (Fig. 1). The 
recent rapid growth of DL is generated from the need 
for a real-time image processing technique, which is 
the main application of DL through deep and 
convolutional neural networks (CNN). 

 

Figure 1. Artificial intelligence subsets. 
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Deep learning models are developed to tackle real-life problems in various scientific fields. The aim of this study was 
to review recent literature of DL applications in plant science. Furthermore, the major difficulties and future aspects of 
DL in plant science will be discussed.   

2. Deep learning definition  

Deep learning is a comprehensive tool of ML that is constituted upon the principles of artificial neural networks (ANN) 
with great capability to discover complex features in multilayered data. In fact, the main advantage of DL technique 
compared to conventional ANNs is its efficiency in automatically extracting the significant features of the analyzed 
data. This automation allows the researcher to focus on model architecture and results reasoning rather than 
spending long hours on manual feature extraction [8]. This advantage rendered DL as an ideal tool to tackle many 
scientific problems in health care [9], bioinformatics [10], finance [11], and agriculture [12]. 

3. Deep learning in plant science 

DL potentials in plant science research are undeniable. The reason behind this certainty is that plant science, similar 
to all modern sciences, dramatically benefits from visual data and data visualization [13]. Technically, any form of 
visual input can be used for this technique, whether it is any form of spectral imaging or visualization of data to be 
interpreted as an image such as metabolic profiles and nucleic acid sequence. However, different DL techniques are 
suitable for the different data inputs. For instance, CNN models are ideal for high dimensional data such as spectral 
images inputs, while recurrent neural network (RNN) and long-/short-term memory (LSTM) are preferable for 
sequential data such as DNA and RNA sequences. 

Many approaches can be used to tackle the subject of deep learning applications in plant science. For instance, DL 
applications can be classified technically based on the DL technique or input data format. However, the current review 
addresses the subject by classifying DL applications into three distinctive levels: Omics level, Micro/Macroscopic level, 
and population level. 

3.1. Omics level 

Omics are a collective field of biological studies that end with the suffix -omics, such as genomics, transcriptomics, 
proteomics, and metabolomics. These studies address the quantification, structure, and functionality of biological 
molecules. Therefore, omics provide valuable knowledge of plant organizational functionality [14]. Due to the large 
data usually provided by omics studies methodologies, DL became a necessary inseparable tool of omics data 
processing and reasoning.  

Since omics data is usually sequential, RNNs and LSTM are widely used to process these data. The primary purpose of 
DL in omics studies is to locate and highlight unique features of interest in the studied data, such as detecting single 
nuclear polymorphisms (SNPs) (Fig. 2 A) and enhancers’ sequences (Fig. 2 B) [15] or to translate the obtained data 
(input) into other forms of information (output). For this purpose, molecular data is collectively or individually used 
to produce a general conceptualization of the plant morphology and phenotypic characteristics, which might have 
limitless breeding applications [16] (Fig. 2 C). 

DL techniques are pushing omics research forward in many aspects (Table 1); however, it is stated that other 
techniques, such as non-additive Gaussian kernel or simple arc-cosine kernel, might produce more reliable predictions 
based on omics data compared to DL [17]. This observation might be attributed to the overall complicated DL fine-
tuning. Therefore, more research should be conducted in the field of DL model’s optimization for omics-based 
predictions. 
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Figure 2. Examples of deep learning applications in omics. 

 

Table 1. Recent deep learning applications in plant omics. 
Plant Data Model Application Reference 
Maize 
Eucalyptus GBS* LSTM SNP detection and Trait prediction [18] 

Broad bean GBS CNN rSNPs** identification [19] 

Rice DNA methylation 
and RNA-seq CNN Epigenomic modifications examining [20] 

Maize DNA Sequence CNN Predicting transcriptional levels [21] 
Arabidopsis 
Rice 

Nanopore DNA 
reads 

BRNN*** with LSTM 
units Cytosine methylations detection [22] 

Soybean SNPs CNN Phenotype prediction [23] 
Wheat SNPs CNN Phenotype prediction [24] 
Maize 
Wheat SNPs Densely connected 

network 
Trait prediction under various 
environments [25] 

Barley 

Hyperspectral UV 
scans and 
secondary 
metabolites  

self-attention 
network (SAN) 

Investigating plant-pathogen 
interaction (Barley x Powdery 
mildew) 

[26] 

* GBS: Genotyping by sequencing GBS 
** rSNPs: Regulatory SNPs 
*** BRNN: Bidirectional recurrent neural networks 
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3.2. Micro/Macroscopic level 

The main concern of microscopic studies is to investigate the plant on a cellular level, such as cellular organelles, full 
cell, and tissue research. On the other hand, macroscopic studies, in this context, address the characterizations and 
interactions of a whole or part of a plant. The data used for this type of study are predominantly images of any range 
of the electromagnetic spectrum.  

Various data acquisition systems are being used in Micro/Macroscopic DL, such as visible light sensors [27], infrared 
(IR) and near-infrared (NIR) [28], ultraviolet [29], hyperspectral [30], and even X-rays [31]. Furthermore, other 
supportive techniques are being used to increase the depth of the acquired imagery such as cell staining in microscopy 
[32] and fluorescence imaging systems [33]. There are also some attempts to employ plant’s electrical signals
measurements in DL research [34].

The applications of DL in this level are countless such as taxonomy and classification, disease/stress recognition and 
early warning systems, and physiological events tracking. (Table 2) covers some of the recent studies in the field.   

Table 2. Recent deep learning applications in plant micro and macro studies. 
Plant Data Model Application Reference 

M
ic

ro
 st

ud
ie

s 

Eggplant RGB images CNN Pollen development stages identification [35] 
35 rare 
species 

Composite images (12 
channels) 

CNN pollen classification [36] 

Maize RGB images CNN Stomata detection and classification [37] 
Lenga beech RGB images CNN Xylem vessels segmentation [38] 
Plant cell 
datasets 

 Confocal laser scanning 
microscope imagery 

CNN cell segmentation and tracking [39] 

M
ac

ro
 st

ud
ie

s 

Crambe X-ray images CNN Seed quality assessment [31] 
Okra Hyperspectral images CNN Hybrid seed classification [40] 
Chickpea RGB images CNN Seed classification [41] 
Four plant 
datasets 

RGB images CNN Species classification [42] 

Sorghum RGB images CNN and 
LSTM 

Nitrogen deficiency stress [43] 

Potato RGB images CNN Tuber disease detection [44] 
Potato Hyperspectral images 1D-CNN Anthracnose identification [45] 
Soybean Hyperspectral images 3D CNN Charcoal rot disease identification [30] 

3.3. Population level 

Population plant science refers to the study of plant communities, whether in natural habitats (e.g., forests, 
grasslands, and deserts) or in agricultural land. Population studies tackle various issues such as plant cover 
classification and surveys, plant communities’ biological functions, the interactions between individuals or 
species, and how plant populations are being influenced and influence the surrounding environment (Table 3).  

Spatial imagery is the predominant study material in DL population studies. The exponential increase in the 
availability of remote sensing (RS) datasets increased DL dependant plant population studies. Furthermore, the recent 
developments in unmanned aerial vehicles (UAV) manufacturing resulted in the production of lighter, more powerful, 
and affordable drones capable of carrying all sorts of image acquiring systems. These developments created a 
precious opportunity for research teams to create their RS datasets.  

10 
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Table 3. Recent deep learning applications in plant population studies. 
Population type Data Model Application Reference 
Wetland  Hyperspectral images CNN Plant Communities mapping [46] 
Forest  RGB images CNN Tree classification [47] 

Cornfield  RGB images CNN Corn plant count and plantation rows 
detection [48] 

Citrus fields Hyperspectral images CNN Citrus phenotyping  [49] 
New Zealand 
glacier foreland 

 RGB images CNN 

Mapping plant cover 

[50] Central Chile Mapping invasive species 
New Zealand 
primary forests Mapping vegetation succession 

Central Chile  RGB images CNN Segmentation of plant species [51] 
Soybean field 
trials Hyperspectral images CNN Predicting days to maturity, plant 

height, and grain yield [52] 

Soybean breeding 
line 1D and 2D fusion input CNN Yield prediction under drought stress [53] 

Forest Hyperspectral images Faster R-CNN 
and YOLOv4 Pine wilt disease early detection [54] 

 

4. Current and future aspects of deep learning in plant science 

Although DL can provide viable solutions to many complicated issues in plant research, the application of DL in plant 
science studies is still faced with many obstacles. One of the hurdles facing DL in plant science is dataset size and 
availability. Due to the relatively high costs of omics research, and the labors related to all three discussed levels of 
plant research, constructing largely enough datasets is a tiresome task. In fact, DL models depend greatly on the size 
and balance of the training and validating datasets to illustrate adequate generalization since small datasets usually 
result in overfitted models [55]. To overcome this obstacle, image augmentation techniques (Fig. 3) are used to 
expand the dataset size. Various researchers employed data augmentation to increase the accuracy of the developed 
DL models to some extent. However, increasing dataset size by adding new samples is still required to obtain more 
reliable results, especially in omics studies, where augmentation techniques are inapplicable. 

 

Figure 3. Image augmentation strategies. (A) is the original image, while (B-E) represent various augmentation techniques 
applied to the same image, such as mirroring (B), rotating (C), stretching (D), and transitioning (E). 

On the other hand, large datasets require long hours of human supervised labeling since the training process requires 
adequately labeled data. However, the current rise of self-supervised learning (SSL) and semi-supervised learning 
might provide a viable solution to this problem since these techniques require unlabeled or partially labeled datasets 
to learn [56].  

Among all three discussed levels of DL research in plant science, omics are still poorly represented. This poor 
representation is mainly due to the high costs of datasets generating and the unsuitability of omics data in its raw 
forms to be used in DL training which requires long hours of processing. Therefore, developing new methods for 
omics data preparation and pre-processing is necessary. Furthermore, employing layer visualizing methods such as 
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saliency map [23] and feature map [27] might be of great importance. These maps provide valuable information 
regarding the features CNNs use to classify and predict. Therefore, these visualizations can assist omics research in 
selecting the best plant characteristics. 

As for micro/macroscopic levels, it is expected that DL techniques will transform from a complementary assistant tool 
to play more vital roles. Novel DL models are being developed daily to provide a deeper understanding of 
physiological processes and biological interactions between plants and their abiotic and biotic surroundings [43-45]. 
Additionally, DL has excellent potential to provide rapid and accurate judgments in agricultural production lines [27]. 

Population level DL studies are expected to play significant roles in the real-time tracking of invasive species and plant 
population dynamics in natural habitats [46][47][50][51]. Furthermore, the new models will introduce a new age of 
cost-effective and accurate DL-assisted agricultural extension [52][53], which will significantly positively impact food 
production chains in the near future. 
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