
                            E-NAMTILA Publishing  DYSONA - Life Science 
                            DLS 4 (2023) 50-65 DOI: 10.30493/DLS.2023.413087  

 50  
 

  All published articles in DYSONA - Life Science  
journal are distributed under a Creative Commons Attribution 4.0 
International License. 
DYSONA Life Science ISSN: 2708-6291 
 

An overview of hypoxia-induced oxidative 
stress and NRF2 role in breast cancer 
progression 
Megharani Mahajan 1* 

 
1, Department of Medicine, Hematology and Oncology, The University of Texas Health Science Center San Antonio, San Antonio, 
Texas, United States 

                                                                           Abstract 

 
E-mail: 
mahajanm@uthscsa.edu 
  
Received: 23/08/2023 
Acceptance: 24/09/2023 
Available Online: 26/09/2023 
Published: 01/10/2023 
 

   
Despite the significant progress made in the areas of early detection, treatment, 
and neoadjuvant therapy, breast cancer remains a prominent cause of mortality 
on a global scale. The tumor microenvironment (TME) is of paramount 
importance in the context of therapeutic resistance and the advancement of 
cancer. Hypoxia, characterized by a low level of oxygen, is a prevalent attribute 
found in the majority of TME. Hypoxia induces the production of reactive oxygen 
species (ROS), leading to the occurrence of oxidative stress. The occurrence of 
hypoxia-induced oxidative stress results in the modification of cancer cell 
metabolism, impaired vascularization, enhanced cell motility, and metastasis, 
ultimately resulting in the acquisition of epithelial-to-mesenchymal transition 
(EMT). Hence, the presence of hypoxia-induced oxidative stress poses a 
substantial obstacle to the successful implementation of cancer therapies. 
Hypoxia-inducible factor-1α (HIF-1α) plays a pivotal role in the cellular 
response to hypoxia in tumors. It initiates the transcription of a multitude of 
genes, encompassing pro-angiogenic and pro-metastatic genes. Another 
significant signaling molecule that is activated in response to tumor hypoxia and 
oxidative stress is nuclear factor erythroid 2–related factor 2 (Nrf2). The 
regulatory role of ROS encompasses the modulation of both HIF-1α and Nrf2 
signaling pathways. Moreover, the essentiality of coordinated signaling between 
HIF-1α and Nrf2 for tumor survival, metastasis, and chemo-resistance is evident, 
thereby contributing to the progression of tumors. While HIF-1α is widely 
recognized as a crucial mediator of the cellular reaction to low oxygen levels, it 
is important to note that Nrf2, a transcription factor responsible for regulating 
antioxidants, plays a critical role in facilitating HIF-1α-mediated responses to 
hypoxia. This review article places emphasis on the role of hypoxia-induced 
oxidative stress in the progression of breast cancer, discussing the underlying 
mechanisms associated with this phenomenon. 
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1. Introduction 

1.1. Cancer 

Cancer is characterized by the presence of an anomalous aggregation of cells that have undergone a loss of regulatory 
mechanisms, resulting in uncontrolled proliferation. It has the potential to manifest in nearly any anatomical organ. In 
order for it to be detected, the size of the entity must attain a magnitude of 1 cm (~ 1 million cells). In the year 2020, a 
global total of approximately 19.3 million instances of cancer were documented, resulting in approximately 10 million 
fatalities [1]. According to a report, the prevalence of cancer patients in India in the year 2020 was documented at 
1.39 million cases [2]. Cancer ranks as the second most prevalent cause of death on a global scale, affecting 
approximately one in four individuals with a lifetime risk. The combination of an unfavorable prognosis, elevated 
mortality rates, and limited therapeutic options contribute to the substantial impact of this issue on public health [3].  
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1.2. Breast cancer 

Breast cancer (BC) is the most prevalent form of cancer and a substantial contributor to mortality associated with 
cancer in women on a global scale. According to recent data, the year 2020 witnessed a considerable number of 
women, approximately 2.3 million, receiving a diagnosis of BC worldwide. Tragically, this disease also claimed the 
lives of approximately 685,000 individuals during the same period [1]. BC accounts for approximately 30% of the total 
incidence of new cancer cases among women [4]. BC originates within the breast tissue, primarily affecting the milk 
ducts and lobules. Ductal carcinoma, which accounts for approximately 85% of cases, refers to cancer that originates 
from the ductal region. On the other hand, the neoplastic growth originating from the mammary lobules is referred to 
as lobular carcinoma, accounting for approximately 15% of all cases. The presence of a malignant neoplasm limited to 
either the duct or lobule is typically asymptomatic and exhibits the lowest propensity for metastatic dissemination. 
Nevertheless, as time elapses, cancer has the potential to advance and infiltrate the adjacent breast tissue, resulting in 
invasive breast cancer. Furthermore, it can disseminate to the nearby lymph nodes, known as regional metastasis, or 
to distant organs throughout the body, referred to as distant metastasis. This process, commonly referred to as 
metastasis, is primarily accountable for treatment ineffectiveness and represents the leading cause of mortality in 
BC cases [5]. While the majority of cancer types exhibit a higher incidence rate among males compared to females, 
BC deviates from this pattern, displaying a higher incidence rate among females than males [6]. The prevalence of this 
condition is significantly higher in women compared to men, with a ratio of 100:1. The incidence of breast cancer in 
men has exhibited stability over the course of the last three decades, with a lifetime risk of less than 1% [7].  

There are multiple factors that contribute to an increased susceptibility to developing BC. The risk factors for BC 
encompass various factors such as age, obesity, alcohol consumption, radiation exposure, tobacco use, family history 
of breast cancer, reproductive history (including age at onset of menstruation and first pregnancy), postmenopausal 
hormone therapy, and mutations in the genes BRCA1, BRCA2, and PALB-2 [8]. In a general sense, symptoms 
associated with BC include: 

1. Painless lump (thickening in the breast) 
2. Variation in appearance, shape, and size of a breast 
3. Redness, dimpling, or other variation in the skin 
4. Change in nipple appearance and abnormal nipple discharge [9]. 

However, in most cases, lumps are not cancerous. Therefore, a complete medical examination, comprising imaging of 
the breast and biopsy, is necessary to determine if a mass is benign (noncancerous) or malignant (cancerous). BC is a 
highly complex disease with a high degree of diversity within tumors [10]. Therefore, the prognosis of the BC patient 
depends on the molecular subtype of cancer. Depending on the presence or absence of the Estrogen Receptor (ER), 
Progesterone Receptor (PR), and Human Epidermal Growth Factor Receptor (HER2) there are four main BC molecular 
subtypes [11] as follows: 

1. Luminal A (ER+/PR+/HER2-) 
2. Luminal B (ER+/PR+/HER2+) 
3. Triple-negative (ER-/PR-/HER2-) 
4. HER2-positive (ER-/PR-/HER2+) 

Among all, luminal A (ER+/PR+/HER2-) is the most diagnosed BC subtype with a lower rate of metastasis, while 
HER2+(ER-/PR-/HER2+) is the least prevalent of the four subtypes [12]. Luminal B (ER+/PR+/HER2+) is positive for all 
three receptors. Furthermore, triple-negative breast cancer (TNBC) (ER-/PR-/HER2-) possesses the highest recurrence 
and metastatic rate with the lowest overall 5-year survival rate [13][14]. The presence of hormone receptors allows 
for targeted endocrine therapy. HER2+ permits the utilization of targeted anti-HER2 therapeutics to decrease tumor 
volume and the likelihood of metastasis [15]. However, due to the lack of hormone receptors in TNBC, it lacks 
predictive markers, and therefore chemotherapy and radiation therapy are the sole options to decrease tumor volume 
and prevent metastasis [15][16]. TNBC is frequently seen in younger patients, specifically premenopausal women of 
<40 years of age [17]. TNBC accounts for approximately 15–20% of all BC cases [18]. It possesses characteristics such 
as increased invasiveness with enhanced metastatic potential, chemo-resistance, elevated rate of relapse, and worse 
overall prognosis [19][20]. Development of chemo-resistance within the TNBC subtype reduces the postoperative 
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treatment's efficacy, hence increasing the likelihood of recurrence at a distant site. Therefore, extensive research has 
been devoted to understanding the mechanisms of adaptation and resistance to chemotherapeutics within TNBC [21]. 
The anticipated mechanisms for chemo-resistance within TNBC depend on the original tumor’s heterogeneity, the 
proportion of cancer stem cells present, and the communication of BC cells with other cells in the tumor 
microenvironment (TME) [22][23]. Recent studies showed that Hypoxia in TME is strongly correlated to clinic-
pathological features, and the development of different tumors and BC is among them [24]. 

1.3. Hypoxia 

Hypoxia refers to the condition in which tumor cells experience a lack of molecular oxygen. Hypoxia represents a 
common characteristic of the TME in nearly all types of solid tumors. The phenomenon occurs due to the rapid 
proliferation of cancer cells, leading to the surpassing of the surrounding vasculature's capacity. Consequently, this 
causes a decline in normal oxygen levels (≥40 mmHg) and the eventual attainment of hypoxic levels (0–20 mmHg) 
[25][26]. In fact, the development of normal tissues is characterized by a synchronized process with the formation of 
blood vessels, whereas in the context of cancer, tumor growth is facilitated by the activation of oncogenes 
independent of a supportive vascular network. Hypoxia typically occurs within solid tumors when they are located 
approximately 100μm away from a functional blood vessel [27]. Based on oxygen concentration, solid tumors contain 
three regions. 

1. Normoxic (located near blood vessels). Normoxic cells are typically viable and proliferative 
2. Hypoxic (peri-necrotic cells with the ability to exist at very low oxygen levels (PO2 ≤1%)  
3. Necrotic (located 150μm from a parent blood vessel and contains no oxygen) [28]. 

Hypoxia typically causes cell death in normal cells. However, in tumor cells hypoxia leads to mutations and allows 
them to adapt to limited nutrition and the harsh TME, enabling their survival. Under these circumstances, selected 
viable cells release pro-angiogenic factors, stimulating new blood vessel formation and contributing to malignant 
progression [29][30]. Low oxygen levels impact signaling pathways through HIF-1, leading to drug resistance and a 
worse prognosis. Hypoxic tumor cells drive tumor progression [31]. Hypoxia is associated with poor clinical outcomes 
and interferes with successful treatment. HIF is a hypoxia-responsive transcription factor upregulated in response to 
hypoxia [32]. The HIF family consists of three members: HIF-1 (expressed in tumor cells), HIF-2 (expressed in tumor-
associated macrophages), and HIF-3 (expressed in the human kidney and pulmonary alveolar epithelial cells) [33-36].  

HIF is composed of α and β subunits, forming a heterodimeric structure. Under normal oxygen levels (normoxic 
conditions), the α and β subunits of HIF dissociate. HIF-1α is a crucial component in the cellular processes that are 
activated in response to low oxygen levels [37]. Under normal oxygen levels, the enzymatic activity of prolyl 
hydroxylases (PHDs) is responsible for the hydroxylation of the oxygen-dependent degradation domain (ODDD) of 
HIF-1α. Hydroxylated HIF-1α is identified by von Hippel–Lindau (VHL) protein. VHL protein has been observed to 
recruit an E3 ubiquitin ligase, which is responsible for catalyzing the poly-ubiquitination of HIF-1α. This process 
ultimately leads to the degradation of HIF-1α through the proteasomal pathway [37]. Under hypoxic conditions, the 
process of ubiquitination is suppressed for HIF-1α. Consequently, HIF-1α becomes stabilized and associates with the 
HIF-1β subunit to form an active HIF-1 complex. Active HIF-1 complex induces transcription of target genes 
containing hypoxia response element (HRE); which is represented by the core sequence 5′-RCGTG-3′ [38]. Thus, HIF1 
is known to exert a significant influence on various crucial aspects of tumor biology. These include angiogenesis 
[39][40], epithelial-to-mesenchymal transition (EMT) [41][42], invasion [43], metastasis [44][45], stem cell 
maintenance [46], as well as resistance to radiation therapy [47] and chemotherapy [48]. 

Hypoxia induces the generation of Reactive Oxygen Species (ROS), causing Oxidative Stress. ROS stabilizes the 
expression of HIF-1α thereby regulating the expression of several genes involved in the modulation of tumor growth 
and progression [49]. Therefore, a detailed understanding of the role and mechanism of action of hypoxia-mediated 
oxidative stress in regulating HIF-1α activity and tumor progression will help develop potential therapeutic 
interventions. 
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1.4. Oxidative stress in breast cancer 

A hallmark of hypoxia is the formation of ROS, causing oxidative stress. An imbalance between the generation of ROS 
and antioxidant defense leads to oxidative stress in the body. Superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl 
radicals (•OH), and singlet oxygen (1O2) are known as ROS [50][51]. ROS are by-products of aerobic metabolism, 
which possesses strong oxidizing ability. Every cell in the human body is exposed to ~1.5×105 oxidative hits per day 
[52]. At low concentrations, ROS functions as a secondary messenger maintaining cellular homeostasis while they are 
deleterious to cells at a higher concentration by causing damage to DNA, lipids, and proteins [53]. Although the 
accumulation of ROS in hypoxic cells is not clearly understood, studies suggest that lack of molecular oxygen under 
hypoxia blocks the formation of ATP by shutting down the mitochondrial electron transport chain (ETC) [54]. 
Electrons that would otherwise be funneled into ETC are then transferred to molecular oxygen in an incomplete 
reduction reaction resulting in the formation of oxygen radicals (superoxide and hydroxyl radicals). These ROS can 
damage DNA, RNA, act as a signaling molecule activating the pro-survival pathway, including PI3K/MAPK pathway, 
and thus, contribute to tumor progression [55]. 

Cancer cells exhibit heightened metabolic activity and experience low oxygen levels, resulting in an increased 
production of ROS molecules. These molecules have the potential to cause DNA damage and serve as secondary 
messengers in various redox-sensitive signaling pathways that play crucial roles in cell survival, tumor resistance, and 
tumor progression [56]. The phenomenon of oxidative stress plays a role in the promotion of cancer stemness, 
angiogenesis, invasion, and metastatic capacity. Consequently, the regulation of oxidative stress has emerged as a 
significant approach in the realm of cancer prevention [57]. Cells have a special defense system called ‘antioxidants’ 
which convert unstable free radicals into stable, less damaging molecules, thus maintaining ROS at physiologically 
normal levels [58]. In response to ROS, various transcription factors are activated, such as Nrf2, HIF-1α, p53, NF-κB, 
STAT, and AP-1 [59-65]. Among all transcription factors, Nrf2/Keap1 pathway plays a key role in the regulation of 
cellular response to oxidative stress. 

1.5. Nrf2/Keap1 pathway 

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an antioxidant transcription factor that binds to and mediates the 
expression of antioxidant response element (ARE) containing genes. Nrf2 is complexed with Kelch-like ECH-
associated protein 1 (Keap1) in the cytoplasm under normal cellular conditions, maintaining Nrf2 at a low level. 
However, in response to various stresses, Nrf2 is de-repressed and induces the expression of ARE-containing genes. 
Human Nrf2 is 605 amino acids long which contains six highly conserved domains known as Neh (Nrf2-ECH) domains. 
Neh1 domain contains a bZIP motif and helps in binding to ARE. Neh2 domain acts as a negative regulatory domain. 
Neh3 domain helps in Nrf2 transactivation. The Neh4 and Neh5 domains are indispensable for Nrf2 transactivation, 
and the Neh6 domain is needed for Nrf2 protein degradation [66][67]. On the other hand, Keap1 possesses five 
discrete domains: NTR (N-terminal region), BTB (Broad complex, Tramtrack, and Bric-à-Brac), IVR (intervening 
region), DGR (double glycine repeat or Kelch repeats), and CTR (C-terminal region). The DGR and CTR domains of 
Keap1 form a β-propeller structure (together known as DC domain) and interact with the Neh2 domain of Nrf2. IVR 
domain of Keap1 comprises 8 cysteine residues (C196, C226, C241, C249, C257, C273, C288 and C297), of which, C273 
and C288 act as electrophilic stress sensors while the BTB domain helps to dimerize Keap1 [68]. 

Under normal cellular conditions, Nrf2 is bound with its actin-binding protein Keap1 in the cytoplasm. Keap1, also 
known as an inhibitor of Nrf2 (INrf2), exists as a dimer inside the cells. It is a substrate adapter for the E3-ubiquitin 
ligase (Cul3/Rbx1) complex with Nrf2, causing poly-ubiquitination and proteasomal degradation of Nrf2. However, in 
response to stress (oxidative stress, electrophilic stress, or chemical inducers), key cysteine sulfhydryl groups in 
keap1 (especially Cys273 and Cys288) are modified, which leads to dissociation of Nrf2 from keap1. Nrf2 becomes 
stabilized and translocates into the nucleus. Once inside the nucleus, Nrf2 interacts with its binding partner, especially 
small musculoaponeurotic fibrosarcoma (sMaf), and induces the expression of ARE-containing genes [69]. Nrf2 
mediates the transcription of ARE-containing phase II cytoprotective enzymes including NAD[P]H:quinone 
oxidoreductase-1 (NQO1), Heme oxygenase-1 (HO-1), γ-glutamyl cysteine ligase (γ-GCS), and glutathione S-
transferase (GST) [70][71], which are involved in the removal of intracellular ROS. The expression of Nrf2-dependent 
antioxidant genes is essential for maintaining cellular redox homeostasis by decreasing oxidative stress and 
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protecting the body from numerous diseases. However, there is a "dark side of Nrf2" [72]. Nrf2 and its downstream 
genes are overexpressed in various cancers, including BC, giving cancer cells survival and growth advantages [73].  

Numerous studies have shown that proliferation rates of various cell lines vary depending on their Nrf2 status. Cells 
overexpressing Nrf2 proliferate faster than wild-type cells, while cells with Nrf2 knockdown proliferate more slowly 
[73-75]. NRF2 activation also reduces apoptosis, while its inhibition increases the number of apoptotic cells. 
Mechanistically, Nrf2 activation increases the expression of B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra 
large (Bcl-xl), reduces caspase-3/7 activation, and reduces the release of cytochrome c release from the mitochondria 
[76][77]. Activated Nrf2 in cancer cells has been shown to promote angiogenesis [78][79], metastasis [80][81], 
radioresistance [82], chemoresistance [83], and thereby contribute to tumor progression. 

Apart from cytoprotection and chemoresistance, Nrf2-mediated anti-oxidation is essential for HIF-1-mediated hypoxic 
responses. ROS regulates both HIF-1 and Nrf2 signaling. Numerous studies have shown that the inhibition of Nrf2 
significantly reduced the HIF-1 α level [78-84]. Thus, the crosstalk between Nrf2 and HIF-1 is essential for tumor cell 
survival, angiogenesis, invasion and metastasis, and radio and chemoresistance. Therefore, understanding the role 
and regulation of Nrf2 in tumor angiogenesis and metastasis is necessary to inhibit tumor progression. 

2. Hypoxia in breast tumor angiogenesis 

2.1. Angiogenesis and angiogenic signaling 

Angiogenesis, derived from the Greek words "angio" meaning blood, and "genesis" meaning formation, refers to the 
physiological process through which new blood vessels are generated from pre-existing vessels. This process differs 
from vasculogenesis, which involves the formation of new blood vessels from precursor cells known as endothelial 
precursor cells or angioblasts. Vasculogenesis occurs mainly during embryonic development, and in adults, it is mainly 
restricted to the heart, brain, or pathophysiology of endometriosis. Angiogenesis occurs during development, wound 
healing, the menstrual cycle, and pregnancy as a controlled series of events, supporting the tissue requirements. 
However, in pathological conditions such as cancer, the same angiogenic signaling pathways are induced and abused 
for cancer progression. To promote angiogenesis, tumor cells tilt the balance between pro and anti-angiogenic factors 
towards stimulatory angiogenic signals, a process known as an angiogenic switch. Angiogenesis supports the growth 
of tumors beyond the size of 1-2 mm3 [85]. 

The process of angiogenesis encompasses a series of four distinct steps: 

1. The enzymatic degradation of components within the extracellular matrix (ECM) 

2. The activation and migration of endothelial cells (ECs) 

3. The proliferation of endothelial cell 

4. The transformation of endothelial cells, wherein they assume a tubular morphology and organize themselves 
into capillary tubes, ultimately gives rise to the formation of unique basement membranes. 

During tumor growth and proliferation, different types of regulators are released from tumor cells, endothelial cells, 
stromal cells, and ECM. Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming 
growth factor-α and -β (TGF-α and -β), epidermal growth factor (EGF), placental-derived growth factor (PlGF), 
platelet-derived growth factor (PDGF), interleukin (IL)-8, cyclooxygenase-2 (COX-2) and angiopoietins 1 and 2 are 
some of the well-known pro-angiogenic regulators. Angiostatin, endostatin, tumstatin, IL-12, thrombospondin-1 (TSP-
1), interferon-α, -β and –γ, platelet factor-4, and tissue inhibitors of metalloproteinases (TIMPs) are some well-known 
anti-angiogenic regulators [86-91]. 

In mature capillaries, the vessel wall is made of EC lining, a basement membrane, and a layer of cells called pericytes. 
Once tumor volume reaches a few mm3, oxygen and nutrient supply become limiting, and tumor cells undergo an 
angiogenic switch, resulting in the production and release of growth factors into the surrounding tissue. Angiogenic 
factors released by tumor cells bind to EC receptors and initiate the process of angiogenesis. Once stimulated, ECs 
secrete proteases such as matrix metalloproteinases (MMPs), heparanase, and other digestive enzymes that aid in the 
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digestion of the basement membrane surrounding the vessel [92]. The junctions between ECs become altered, and the 
cell projections grow toward the source of the stimulus. ECs migrate and proliferate into the growth factor gradient, 
forming new vascular structures in the tumor mass. Finally, matrix proteins are deposited, mature pericytes stabilize 
the new vessels, and functional blood vessels are formed. The formation and maturation of new blood vessels are 
driven by interactions between cell surface proteins and the ECM. Some of the surface proteins identified in this 
interaction are VE-cadherin, galectin-2, hybrid oligosaccharides, and PECAM-1 [93-95]. 

Different situations can provoke an unbalanced shift toward pro-angiogenic factors and trigger an angiogenic switch. 
These are: 

1. Metabolic stress (hypoxia, low pH, or hypoglycemia) 

2. Genetic mutations (activation of oncogenes or loss of tumor-suppressor) 

3. Mechanical stress (pressure generated by proliferating cells) 

4. Immune/inflammatory response [91-96]. 

Hypoxia is one of the main factors that drive tumor angiogenesis by promoting increased expression, and secretion of 
VEGF and other pro-angiogenic factors from hypoxic cells [97]. Nrf2 and HIF-1α signaling plays a major role in 
hypoxia-mediated tumor angiogenesis. 

2.2. Nrf2 in breast tumor angiogenesis 

Nrf2/HO-1 pathway is the master antioxidant regulator in a cell, protecting cells against oxidative damage and thus 
considered a favorable signaling pathway. Nevertheless, the data unveiled the adverse aspects of this pathway, 
bestowing upon cancer cells the ability to thrive, fostering the growth of new blood vessels, facilitating the spread of 
cancer to other parts of the body, and conferring resistance to chemotherapeutic substances. [98]. Nrf2 contributes to 
tumor angiogenesis via various mechanisms:  

1. The knockdown of Nrf2 has been shown to reduce angiogenesis and subsequent tumor growth in xenograft 
mouse models. Mechanistically, the knockdown of Nrf2 reduced the HIF-1α protein levels and thereby 
decreased the expression of pro-angiogenic factors [78][99].  

2. Nrf2 downstream gene NQO1 directly binds to the ODDD site of HIF-1α. This binding prevents PHDs from 
interacting with HIF-1α, thereby inhibiting its proteasomal degradation.  

3. Nrf2 promotes hypoxia-mediated angiogenesis of cardiac microvascular endothelial cells through HO-1 [100].  

4. Further studies have shown the role of Nrf2 in follicle-stimulating hormone-induced (FSH-induced) 
angiogenesis in human epithelial ovarian cancer via VEGF expression [101]. The activated Nrf2 increases the 
expression of HO-1 and IL-8. HO-1 overexpression, in turn, increases VEGF expression. The IL-8 and VEGF act 
as pro-angiogenic factors [102][103].  

These studies illustrate the complex role of Nrf2 in tumor angiogenesis. 

3. Hypoxia in breast tumor metastasis 

3.1. Metastasis and epithelial-to-mesenchymal transition 

Metastasis is a complex process by which cancer cells spread from primary sites to distant sites of the body. It is a 
complex and deadly process that has been associated with the distant spread and cancer-associated mortality. The 
process of metastasis involves several stages as follows: 

1. Activation of EMT, during which cancer cells lose cell-cell, cell-substrate contact, and acquire cell migration. 

2. Local invasion (during which malignant cells degrade the basal lamina, the special ECM) 

3. Intravasation (tumor cells enter the bloodstream) 
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4. Capacity to live in the circulation 

5. Extravasation (tumor cells exit the bloodstream) 

6. Distant metastatic colonization (disseminated tumor cells adapt to the new microenvironment and switch 
from the migratory to the proliferation mode to generate macro metastases) [104].  

The location of the metastases is not always accidental. Based on the type of cancer, particular organs and tissues are 
more prone to metastases than others [105]. BC, for example, tends to metastasize more commonly to the bones and 
lungs, and this specificity is mainly mediated by soluble chemokines [106] and TGF-β [107]. EMT occurs during 
embryo development, tissue regeneration, wound healing, and organ fibrosis. It is also associated with tumor 
metastasis and, generation of tumor stem cells and thus contributes to chemoresistance and tumor progression 
[108][109]. A significant number of molecular pathways cooperate in the process of EMT, ranging from activation of 
transcription factors, and reorganization of the cytoskeleton to changes in the expression of miRNAs [110]. Vimentin, 
an EMT marker, is overexpressed in various cancers, including BC, and its overexpression is associated with enhanced 
tumor growth, invasion, and poor prognosis [111]. MMPs are zinc-binding metalloproteinases involved in the 
degradation of ECM components, thereby contributing to tumor cell migration and invasion. There are 23 MMPs 
present in humans, among which MMP9 and MMP2 play a vital role in cancer invasion and metastasis [112][113]. 

During the phenomenon of metastasis, cells undergo a transition from a differentiated state to a less 
differentiated state. In general, when normal cells lose contact with the extracellular matrix (ECM), they undergo 
apoptosis. In contrast, tumor cells have the ability to detach from the primary tumor through the development of 
specific mechanisms [114]. During the process of epithelial-to-mesenchymal transition (EMT), the permeability of the 
epithelium is increased through the downregulation of E-cadherin, a crucial protein involved in cell-cell adhesion. This 
downregulation is mediated by transcription factors, specifically Slug, Snail, Twist, and ZEB1/2 [115]. EMT is a 
multifaceted mechanism by which cancer cells are able to suppress their epithelial characteristics and enhance their 
mesenchymal properties. EMT is a developmental process that has been conserved throughout evolution 
and facilitates the acquisition of motility and migratory capabilities in cancer cells, enabling their movement away 
from the original tumor site. Thus, EMT plays a role in the development of cancer and enables cancer cells to acquire 
metastatic properties, including enhanced mobility, invasion, and resistance to apoptosis. 

3.2. Nrf2 in breast tumor metastasis 

The role of Nrf2 in tumor metastasis is complex. Nrf2 expression is essential for the migration of both normal as well 
as cancer cells as the knockdown of Nrf2 impairs migration and invasion of a variety of cell lines [116][117]. Previous 
studies showed that Nrf2 promotes EMT by inhibiting E-cadherin expression by an unknown mechanism [80][81]. 
Furthermore, Nrf2 inhibition reduces N-cadherin expression through downregulation of NOTCH1, a downstream gene 
of Nrf2 and a regulator of EMT [118][119]. Also, Nrf2 expression is directly associated with the activation of the 
RhoA/ROCK pathway [76] and is correlated with the activity of gelatinases (MMP2 and MMP9) [120], all of which are 
involved in the migration and invasion of tumor cells [76][120]. Nrf2 has been shown to promote anchorage-
independent growth by inducing the expression of osteopontin, a protein with an essential role in tumor metastasis 
[121].  

4. Regulation of Nrf2 in breast cancer 

Given the importance of Nrf2 in regulating ROS, HIF-1, tumor angiogenesis, and metastasis, understanding its 
regulation is of utmost importance to develop potential therapeutic interventions. Numerous factors are involved in 
regulating Nrf2 protein stability and its nuclear translocation: 

4.1. Keap1 

Keap1 is a negative regulator of Nrf2 and functions as a substrate linker protein. Keap1 is present as a dimeric form 
within the cytoplasm and plays a role in facilitating the interaction between the Cul3/Rbx1-based E3-ubiquitin ligase 
complex and Nrf2. Consequently, it facilitates the process of Nrf2 ubiquitination and proteasomal degradation. Hence, 
under basal conditions, Nrf2 is kept at a low level by Keap1-mediated degradation. However, in response to stress 
(oxidative or electrophilic stress, or chemical inducers), sulfhydryl groups in Keap1, especially Cys151, Cys273, and 
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Cys288, are modified. Modifying these cysteine residues in Keap1 leads to dissociation and activation of Nrf2. 
Activated Nrf2 then translocates to the nucleus, interacts with additional protein factors, including small 
musculoaponeurotic fibrosarcoma (sMaf), and induces the transcription of antioxidant genes [69]. 

4.2. p62 (SQSTM1) 

The protein p62, also known as sequestosome-1 (SQSTM1), functions as a positive regulator of the transcription factor 
Nrf2. This protein is a ubiquitin-binding molecule that engages in competitive binding with Nrf2 for the Keap1 protein. 
The interaction between p62 and Keap1 results in the degradation of Keap1 and the stabilization of Nrf2. 
Furthermore, Nrf2 activates p62 gene expression, forming a positive feedback loop [122-124]. 

4.3. Protein kinase C (PKC) 

PKC is a positive regulator of Nrf2. It phosphorylates Nrf2 at Ser40, which leads to the detachment of Nrf2 from Keap1 
and subsequent activation of Nrf2-dependent antioxidant genes [125]. 

4.4. p21Cip1/WAF1 

p21Cip1/WAF1 is a cyclin-dependent kinase (CDK) inhibitor. It stabilizes Nrf2 by disrupting the Nrf2-Keap1 
interaction [126]. 

4.5. DJ-1 

DJ-1 is Parkinson’s disease protein 7 encoded by the Park7 gene. It stabilizes Nrf2 by disrupting the Nrf2-Keap1 
interaction [127]. 

4.6. PALB2 and BRCA1 

In addition to the factors mentioned above, other proteins that stabilize Nrf2 by affecting the binding between Nrf2 
and Keap1 include partner and localizer of BRCA2 (PALB2) and BRCA1 [128][129]. 

4.7. β-TrCP-Cul1 

Beta-transducin repeat-containing protein (β-TrCP) is a component of the β-TrCP-Cul1 E3 ubiquitin ligase. β-TrCP is a 
negative regulator of Nrf2. Phosphorylation of Nrf2 by glycogen synthase kinase-3beta (GSK-3β) enables Nrf2 to be 
recognized by β-TrCP that in turn marks Nrf2 for ubiquitination and subsequent degradation [130-132]. On the other 
hand, phosphorylation of GSK-3β by phosphatidylinositol 3-kinase (PI3K)/Akt pathway inhibits GSK-3β and leads to 
an increase in the Nrf2 protein stability [130]. 

4.8. Hrd1 

3-hydroxy-3-methylglutaryl reductase degradation 1 (Hrd1) is a negative regulator of Nrf2. It is an E3 ligase involved 
in the degradation of misfolded proteins in the endoplasmic reticulum. It suppresses Nrf2 activity through 
ubiquitination and degradation by the proteasome [133]. 

4.9. Non-coding RNAs 

In addition to the aforementioned factors, Nrf2 is also regulated at the posttranscriptional level by long noncoding 
RNAs and microRNAs (miRNAs). Because of their short size and stability in addition to their ability to rapidly respond 
to a variety of stresses and target multiple genes and pathways simultaneously, miRNAs are emerging as promising 
players in cancer therapeutics including BC [134]. 
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5. Conclusions and future therapeutic perspective

In the current review, the role and mechanism of hypoxia-mediated oxidative stress in breast tumor angiogenesis and 
metastasis were discussed. The complexity of NRF2-mediated breast cancer progression was also overviewed. Due to 
these complexities, drug resistance is a significant problem in successful breast cancer treatment strategies. 
Resistance can develop after prolonged exposure to chemotherapeutic drugs or can exist inherently in the patient. 
Tumors rapidly develop resistance after exposure to drugs, leading to most cancer-related deaths. Also, traditional 
drugs operate by inhibiting one or two protein targets, which is inefficient when considering the multitude of protein 
targets involved in BC. Therefore, in order to develop novel therapeutic strategies and improve patient survival, 
miRNA-based therapy may provide a novel approach for the future of cancer therapy. 

The advantage of miRNA-based therapeutics over protein therapeutics is that they are short-sized, stable, respond 
rapidly to various stresses, and simultaneously regulate multiple genes and pathways involved in tumor progression. 
Also, it is possible to supplement tumor-suppressive miRNAs with synthetic oligonucleotides and alleviate effects 
caused by oncogenic miRNAs through artificial antagonists.  Additionally, miRNAs hold the power to inhibit all targets, 
including non-druggable targets. Therefore, miRNAs are emerging as promising candidates in breast cancer treatment 
strategies. 
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